
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 324
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Implementation of Faster and Low Power
Multipliers

Mirishkar Sai Ganesh, G Chethana, Sanjay Panwar

Abstract - A multiplier is the important hardware in most digital and high performance systems such as FIR filters, digital signal
processors and microprocessors. The design of multipliers offers high speed, low power consumption, regularity of layout and it also
occupies less area, even combination of them in multiplier. Generally multiplication goes in two steps. Partial product and then addition.
In this paper we have tried to design different adders and compare their speed and complexity of the circuit that the area occupied. And
designed Wallace tree multiplier then followed by Booth’s Wallace multiplier and compared the speed and power consumption. When the
design of adder is completed we turned to multiplier. The delay amount was reduced when carry save adder were used in Wallace Tree
Applications. And turned to Booth’s multiplier and analyzed the performance of all multipliers. The results of this paper helps us to make
a proper choice of different adders in different digital applications according to requirements.

Keywords – Booth’s Wallace multiplier, FIR filter, Digital Signal processing

—————————— ——————————

I. INTRODUCTION
As the scale of the integration keeps growing,

more and more sophisticated signals processing
systems are being implemented on a VLSI chip.
Multiplications and additions are most widely and
more often used arithmetic computations performed
in all digital signal processing applications. Addition
is a fundamental operation for any digital
multiplication. A fast area efficient and accurate
operation of a digital system is greatly influenced by
the performance of the resident adders.
Multiplications and additions are most widely used
arithmetic computations performed in Digital signal
processing applications. Addition is a fundamental
operation for any digital multiplication. A fast and
accurate operation of a digital system is hugely
influenced by the performance of the resident
adders. A system’s performance can be judged
based on the multiplier performance as multiplier
takes the slowest element in the system and more
area due to which these are the major issues. These

multipliers have moderate performance in speed and
area.

II. LOW-POWER MULTIPLIER DESIGN
Multiplication consists of three steps : generation of
partial products, reduction of partial products, and
finally carry – propagate addition. In general there
are sequential and combinational multiplier
implementations.

A. CARRY LOOK-AHEAD ADDER
Carry look-ahead adder can produce carries faster
due to parallel generation of the carry bits by using
additional circuitry. This technique uses calculation
of carry signals in advance, based on input signals.
The result is reduced carry propagation time. For
example, ripple adders are slower but use the least
energy.

 Carry Look-Ahead Adder

Let Gi is the carry generate function and Pi be
the carry propagate function. Then we can rewrite
the carry function as follows:
Gi = Ai·Bi ...(1)
Pi = (Ai xor Bi) ...(2)
Si = Pi xor Ci ...(3)
 Ci + l = Gi + Pi·Ci ...(4)

————————————————
• Mirishkar Sai Ganesh is currently pursuing Bachelor degree program in

Electronics Communication Engineering in Jawarharlal Nehru
Technological University Hyderabad, India, PH-+91-9491877899. E-mail:
meet.msganesh@hotmail.com

• G Chethana is currently pursuing Bachelor degree program in Electronics
Communication Engineering in Jawarharlal Nehru Technological
University Hyderabad, India, E-mail: chethana.cheth@gmail.com

• Sanjay Panwar has completed Bachelor degree program in Electronics
Communication Engineering in Jawarharlal Nehru Technological
University Hyderabad, India, E-mail: sanjumrcol@gmail.com

IJSER

http://www.ijser.org/
mailto:chethana.cheth@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 325
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Thus, for 4-bit adder, we can compute the carry for
all the stages as shown below:
 C1 = GO + PO·CO ...(5)
 C2 = G1 + P1·C1 = G1 + P1·GO +P1·PO·CO ...(6)
C3 = G2 + P2·C2 = G2 + P2·G1 +P2·P1·GO +
P2·P1·PO·CO ...(7)
C4 = G3 + P3·C3 = G3 + P3·G2 + P3·P2· G1 +
P3·P2·P1·GO + P3·P2·P1·PO·CO ...(8)
In general, we can write:
The sum function:
SUMi – Ai xor Bi xor Ci – Pi xor Ci ...(9)
The carry function:
Ci + l = Gi + Pi.Ci ...(10)
In general, we can write the algorithm as:
If Carry in = 1, then the sum and carry out are given
by,
Sum(i) = a(i) xor b(i) xor ‘1’ ...(11)
Carry(i + 1) = (a(i) and b(i)) or (b(i) or a(i)) ...(12)
If Carry in = 0, then the sum and carry out are given
by,
 Sum(i) = a(i) xor b(i) ..(13)

Carry(i + 1) = (a(i) and b(i))
The sum function:

...(14)

 Si = CiSi0 – CiSi1
The carry function:

...(15)

Ci-1 = CiCi+10 + CiCi-11 ...(16)

B. MULTIPLTER FOR UNSIGNED DATA
Multiplication involves the generation of partial
products, one for each digit in the multiplier, These
partial products are then summed to produce the
final product. The multiplication of two n-bit binary
integers results in a product of up to 2 n bits in
length.

 A Partial Schematic of the Multiplier

C. CARRY SELECTADDER
The concept of CSLA is to compute alternative
results in parallel and subsequently selecting the
correct result with single or multiple stage

hierarchical techniques. In CSLA both sum and
carry bits are calculated for two alternatives Cin = O
and 1. Once Cin is delivered, the correct
computation is chosen using a mux to produce the
desired output. Instead of waiting for Cin to
calculate the sum, the sum is correctly output as
soon as Cin gets there. The time taken to compute
the sum is then avoided which results in good
improvement in speed.

Carry Select Adder

D. MULTIPLICATION ALGORITHM
Let the product register size be 64 bits. Let the
multiplicand registers size be 32 bits. Store the
multiplier in the least significant half of the product
register. Clear the most significant half of the
product register.
Repeat the following steps for 32 times:

• If the least significant bit of the product register is “1”
then add the multiplicand to the most significant half
of the product register.

• Shift the content of the product register one bit to the
right (ignore the shifted-out bit).

• Shift-in the carry bit into the most significant bit of the
product register. Figure 6 shows a block diagram for
such a multiplier.

 Multiplier of Two n-bit Values

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 326
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

E. WALLACE TREE ADDER

 Wallace tree has been used in this project in order
to accelerate multiplication by compressing the
number of partial products. This design is done
using half adders; Carry save adders and the Carry
Look Ahead adders to speed up the multiplication.
As shown in the figure below, since there are four
sign extension values generated namely sign 1E,
2E, 3E and 4E for the partial product PP1, PP2,
PP3 and PP4 respectively. The arrangement of
total four partial product s is shown in the figure
below. The second partial product had to be shifted
left by two bits before adding to the first partial
product. Hence the third will be shifted left by four
whereas for fourth it will be shifted left by six.
Hence after proper arrangement all the four partial
products will be added along with the sign
extension.

 PARTIAL PRODUCT INITIAL ARRANGEMENT

WALLACE TREE MULTIPLICATION METHOD

First of all, the partial product initial arrangement is
rearranged into first stage as shown in figure
above. It can be seen like a tree shape here. The
stage from PP36 till 1 from the 4th partial product is
moved to the first row and 3BE together with 1 is
moved up to the row partial product 2. After
rearrangement, the first three rows will be added
using half adder and carry save adders. The fourth
partial product will not be added first but will be sent
directly to the second stage. Hence, there total up
to nine carry save adders and four half adders. For
second stage, the summation of the first half adders
in right hand side of the first stage is examined.
After the summation is done to add up PP02 and
PP10, The SUM (1S0) will be generated in the
same column as the second stage shows where as
the CARRY (1C0) will be shift left into next level of
summation. In this stage, the bit PP30-PP35 is
finally being added using carry save adder. At this
stage, bit 4BE is also being added by using half
adders. Hence, there are total six carry save
adders and seven half adders needed in this
stage.In third stage, it is a final stage adder and
since there are only remaining two inputs to be
added instead of three, thus carry look ahead is
used to perform the final summation based on the
Sum and Cout signal in which had been
propagated by the second stage. 13-bit carry look
ahead had been designed to be used in this
Wallace tree final stage. The bit PP00 and PP01 are
directly sent to the output without going through any
gate level. Hence, Wallace tree adder will have a
17 bit length output including the carry from the final
bit.

F.BOOTH MULTIPLIER BY AN EXAMPLE

 Let us see an example demonstrating the whole
procedure of Booth multiplier (Radix -4) using
Wallace Tree and Sign Extension Correctors.Let us
take Example of calculation of (34×-42).
 Multiplicand A = 34 = 00100010
 Multiplier B = -42 = 11010110 (2’s Complement
form)
 A×B = 34 × -42 = -1428
 First of all, the multiplier had to be converted into
radix number as in Figure below. The first partial
product determined by three digits LSB of multiplier
that are B1, B0 and one appended zero. This 3 digit

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 327
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

number is 100 which mean the multiplicand A has
to multiply by -2.To multiply by -2, the process
takes two’s complement of the multiplicand value
and then shift left one bit of that product. Hence,
the first partial product is 110111100. All of the
partial products will have nine bits length. Next,
the second partial product is determined by bits B3,
B2, B1 which indicated have to multiply by 2.
Multiply by 2 means the multiplicand value has to
shift left one bit. So, the second partial product is
001000100. The third partial product is determined
by bits B5, B4, B3 in which indicated have to
multiply by 1. So, the third partial product is the
multiplicand value namely 000100010. The forth
partial product is determined by bits B7, B6, B5
which indicated have to multiply by -1. Multiply by -1
means the multiplicand has to convert to two’s
complement value. So, the forth partial product is
111011110. Figure below shows the arrangement
for all four partial products to be added using
Wallace tree adder method. 1E, 1BE 2E, 3E and 4E
is obtained based on the Table 4.2. The way on
how this sign E is arranged has been shown in
Wallace Tree Multiplication Method above. The
Wallace tree for the Example is given below.

Method showing How Partial Products Should Be
Added

To prove the output result is correct:

 11111101001101100 =
 20(0) + 21(0) + 22(1) + 23(1) + 24(0) +
25(1) + 26(1) + 27(0)
 + 29(1) + 210(0) + 211(-1) = 4 + 8
+ 32 + 64 + 512 – 2048 = -1428

III. LOW POWER OPTIMIZATONS
Power optimization is the use of electronic design

automation tools to reduce the power consumption
of a digital design, such as that of an integrated
circuit, while preserving the functionality.

A. Optimization of Multiplier recoding schemes
for Low power
The multiplier operand Y is often recoded into a
radix higher than 2 in order to reduce the number of
partial products. The most common recoding with
digit set {-2, -1, 0, 1, 2}. For a series of consecutive
1’s, the recoding algorithm converts them 0’s
surrounded by a 1 and a (-1), which has potential of
reducing switching activity. At the binary level, there
are many design possibilities. The traditional design
objectives are small delay and small area. The
power issues of different designs have not been
addressed well.Radix-4 multipliers could consume

less power than their radix- 2 counterparts as
recoding reduce the number of PPs to half.
However, the extra recoding logic and the more
complex PP generation logic may present
significant overheads. In addition, recoding
introduces extra unbalanced signal propagation
paths because of the additional delay on the paths
from operand Y to the product output. We have
showed that Wallace tree multipliers consumed less
power than Booth-recoded radix-4 multipliers
although the radix-2 scheme had twice as many
PPs as the radix-4 scheme. This leads us to believe
that the design of recorders and PP generators
plays an important role in the overall power
consumption in multipliers.

B. High level Comparison
When we go for high level comparisons we have
two parameters for us when we consider different
types of recoding schemes. It is the recoder and the
partial product generator. The delay of REC and
PPG isestimated roughly as equivalent XOR2 gate
delay (TXOR2) without considering fan-out and
signal transition directions. Simple gates such
as AND2 have the delay of 0.5TXOR2. Two-level
AND/OR gates and MUX21 have the same delay as
XOR2.Among above recoding schemes,
THREE_SIGNAL_1 has both the simplest recoder
and the simplest PP generator. But doesn’t have a
unique zero handling. After analyzing it was found
out that in an m × n bit radix-4 multiplier, the total
area of recoders is n/2AREC1b while the total area of
PP generators is n /2 * (m+1)APPG1b, where AREC1b
is area of 1-bit recoder cell area and APPG1b is area
of 1-bit partial product generator cell area.
Hence since partial product generators (PPG)
occupy larger areas than the recoders, we need to
simplify PP generators for power saving.
In addition,unique zero handling is desired in order
to reduce the number of unnecessary switching
activities.

IV. OUTPUT WAVEFORMS
BOOTH MULTIPLIER OUTPUT

Binary Form output

Signed Form Output

 WALLACE TREE MULTIPLIER OUTPUT

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 328
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Binary Form Output

Signed Form Output

V. CONCLUSION AND FUTURE WORK
After all this then we tried to improve power efficiency
of circuits. Hence we went for studying different
recoding schemes along with their Partial Product
generators and study time and power required by
them in a multiplication process. After studying them
we went to modify one of the recoding schemes to
find a proper combination of recoder and PP
generator such that we will have simplest PP
generator as these take maximum area in a cell area
and then take care of zero handling as it handles
most of the switching activities. Hence we ended up
creating a better recoding scheme.As an attempt to
develop arithmetic algorithm and architecture level
optimization techniques for low-power multiplier
design, the research presented in this dissertation
has achieved good results and demonstrated the
efficiency of high level optimization techniques.
However, there are limitations in our work and
several future research directions are possible. One
possible direction is radix higher-than-4 recoding. We
have only considered radix-4 recoding as it is a
simple and popular choice. Higher-radix recoding
further reduces the number of PPs and thus has the
potential of power saving. Another possible direction
can be representation of Arguments such as in sign-
magnitude or 2’s compliment form which in any case
would prove better according to situation and require
less power and consume less time.

REFERENCES
1. Armstrong J R and Gray F G (2000), VHDL
Design Representation and Synthesis, 2nd Edition,
Prentice Hall, USA, ISBN: 0-13-021670-4.

2. Asadi P and Navi K (2007), “A Novel Highs-
Speed 54-54 Bit Multiplier”, Am. J.

3. Brown S and Vranesic Z (2005),
Fundamentals of Digital Logic with VHDL Design,
2nd Edition, McGraw-Hill Higher Education,
USA, ISBN: 0072499389.
4. Hasan Krad and Aws Yousi (2010), “Design
and Implementation of a Fast Unsigned 32-bit
Multiplier Using VHDL”.

5. Meier P C H, Rutenbar R A and Carley L R
(1996), “Exploring Multiplier Architecture and Layout
for Low Power”, CIC’96.

6. Navabi Z (2007), VHDL Modular Design and
Synthesis of Cores and Systems, 3rd Edition,
McGraw-Hill Professional,USA,ISBN:
9780071508926.

7. Sertbas A and Ozbey R S (2004), “A
Performance Analysis of Classified Binary Adder
Architectures and the VHDL Simulations”, J. Elect.
Electron. Eng., Vol. 4, pp. 1025-1030, Istanbul,
Turkey.
8. Software Simulation Package: Direct VHDL,
Version 1.2 (2007), Green Mounting Computing
Systems Inc.,Essex, VT, UK.

9. Stallings W (2006), “Computer Organization
and Architecture Designing for Peljormance”, 71h
ed., Prentice Hall, Pearson Education
International, USA, ISBN: 0-13-185644-8.
10. Wakerly F (2006), Digital DesignPrinciples
and Practices, 4th Edition, Pearson Prentice
Hall,USA, ISBN:0131733494.

IJSER

http://www.ijser.org/

	—————————— (——————————
	I. Introduction
	II. LOW-POWER MULTIPLIER DESIGN
	A. CARRY LOOK-AHEAD ADDER
	B. MULTIPLTER FOR UNSIGNED DATA
	C. CARRY SELECTADDER
	D. MULTIPLICATION ALGORITHM
	E. WALLACE TREE ADDER
	 Partial Product Initial Arrangement
	Wallace Tree Multiplication Method
	F.BOOTH MULTIPLIER BY AN EXAMPLE

	III. LOW POWER OPTIMIZATONS
	A. Optimization of Multiplier recoding schemes for Low power
	B. High level Comparison

	IV. OUTPUT WAVEFORMS
	BOOTH MULTIPLIER OUTPUT
	Binary Form output
	Binary Form Output

	V. CONCLUSION AND FUTURE WORK
	References

